网络机器人吧社区

吴恩达老师的机器学习和深度学习课程笔记打印版(全)

大数据挖掘DT机器学习 2019-02-10 16:30:12


向AI转型的程序员都关注了这个号???

大数据挖掘DT机器学习  公众号: datayx


斯坦福大学2014(吴恩达)机器学习教程中文笔记

课程地址:https://www.coursera.org/course/ml

笔记地址:https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes

Machine Learning(机器学习)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车,有效的语音识别,有效的网络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍,你可能会使用这一天几十倍而不自知。很多研究者也认为这是最好的人工智能的取得方式。在本课中,您将学习最有效的机器学习技术,并获得实践,让它们为自己的工作。更重要的是,你会不仅得到理论基础的学习,而且获得那些需要快速和强大的应用技术解决问题的实用技术。最后,你会学到一些硅谷利用机器学习和人工智能的最佳实践创新。

本课程提供了一个广泛的介绍机器学习、数据挖掘、统计模式识别的课程。主题包括:

(一)监督学习(参数/非参数算法,支持向量机,核函数,神经网络)。

(二)无监督学习(聚类,降维,推荐系统,深入学习推荐)。

(三)在机器学习的最佳实践(偏差/方差理论;在机器学习和人工智能创新过程)。本课程还将使用大量的案例研究,您还将学习如何运用学习算法构建智能机器人(感知,控制),文本的理解(Web搜索,反垃圾邮件),计算机视觉,医疗信息,音频,数据挖掘,和其他领域。

本课程需要10周共18节课,相对以前的机器学习视频,这个视频更加清晰,而且每课都有ppt课件,推荐学习。


Coursera深度学习教程中文笔记

课程概述

https://mooc.study.163.com/university/deeplearning_ai#/c

笔记地址

https://github.com/fengdu78/deeplearning_ai_books

这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”

在这5堂课中,学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。Deep Learning Specialization对卷积神经网络 (CNN)、递归神经网络 (RNN)、长短期记忆 (LSTM) 等深度学习常用的网络结构、工具和知识都有涉及。

课程中也会有很多实操项目,帮助学生更好地应用自己学到的深度学习技术,解决真实世界问题。这些项目将涵盖医疗、自动驾驶、和自然语言处理等时髦领域,以及音乐生成等等。Coursera上有一些特定方向和知识的资料,但一直没有比较全面、深入浅出的深度学习课程——《深度学习专业》的推出补上了这一空缺。

课程的语言是Python,使用的框架是Google开源的TensorFlow。最吸引人之处在于,课程导师就是吴恩达本人,两名助教均来自斯坦福计算机系。完成课程所需时间根据不同的学习进度,大约需要3-4个月左右。学生结课后,Coursera将授予他们Deep Learning Specialization结业证书。

“我们将帮助你掌握深度学习,理解如何应用深度学习,在人工智能业界开启你的职业生涯。”吴恩达在课程页面中提到。

搜索公众号添加: datayx  

不断更新资源

深度学习、机器学习、数据分析、python

长按图片,识别二维码,点关注


Copyright © 网络机器人吧社区@2017